首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   12篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2018年   6篇
  2017年   8篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   5篇
  2008年   10篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1991年   1篇
  1978年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有128条查询结果,搜索用时 31 毫秒
101.
102.
JC polyomavirus (JCPyV) is a common human pathogen that results in a chronic asymptomatic infection in healthy adults. Under conditions of immunosuppression, JCPyV spreads to the central nervous system and can cause the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML), a disease for which there are no vaccines or antiviral therapies. Retro-2 is a previously identified small molecule inhibitor that was originally shown to block retrograde transport of toxins such as ricin toxin from endosomes to the Golgi apparatus and endoplasmic reticulum (ER), and Retro-2.1 is a chemical analog of Retro-2 that has been shown to inhibit ricin intoxication of cells at low nanomolar concentrations. Retro-2 has previously been shown to prevent retrograde transport of JCPyV virions to the ER, but the effect of Retro-2.1 on JCPyV infectivity is unknown. Here it is shown that Retro-2.1 inhibits JCPyV with an EC50 of 3.9 μM. This molecule inhibits JCPyV infection at dosages that are not toxic to human tissue culture cells. Retro-2.1 was also tested against two other polyomaviruses, the human BK polyomavirus and simian virus 40, and was also shown to inhibit infection at similar concentrations. Viral uncoating studies demonstrate that Retro-2.1 inhibits BKPyV infectivity in a manner similar to Retro-2. These studies demonstrate that improved analogs of Retro-2 can inhibit infection at lower dosages than Retro-2 and further optimization of these compounds may lead to effective treatment options for those suffering from JCPyV infection and PML.  相似文献   
103.
Genetic modification of herbaceous plant cell walls to increase biofuels yields is a primary bioenergy research goal. Using two switchgrass populations developed by divergent breeding for ruminant digestibility, the contributions of several wall-related factors to ethanol yields was evaluated. Field grown low lignin plants significantly out yielded high lignin plants for conversion to ethanol by 39.1% and extraction of xylans by 12%. However, across all plants analyzed, greater than 50% of the variation in ethanol yields was attributable to changes in tissue and cell wall architecture, and responses of stem biomass to dilute-acid pretreatment. Although lignin levels were lower in the most efficiently converted genotypes, no apparent correlation were seen in the lignin monomer G/S ratios. Plants with higher ethanol yields were associated with an apparent decrease in the lignification of the cortical sclerenchyma, and a marked decrease in the granularity of the cell walls following dilute-acid pretreatment.  相似文献   
104.
Alfalfa (Medicago sativa L.) biomass was evaluated for biochemical conversion into ethanol using dilute-acid and ammonia pretreatments. The two alfalfa lines compared were a reduced S-lignin transgenic cultivar generated through down regulation of the caffeic acid O-methyltransferase gene and a wild-type control. Both were harvested at two maturities. All the samples had similar carbohydrate contents including a mean composition of 316 g glucan and 497 g total neutral carbohydrates per kg dry biomass, which corresponds to a theoretic ethanol yield of 382 l/ton. Ethanol yields for alfalfa stems pretreated with dilute-acid were significantly impacted by harvest maturity and lignin composition, whereas when pretreated with dilute-ammonia, yield was solely affected by lignin composition. Use of a recombinant xylose-fermenting Saccharomyces strain, for converting the ammonia pretreated alfalfa samples, further increased ethanol yields. Ethanol yields for the xylose-fermenting yeast were 232-278 l/ton and were significantly enhanced for the reduced S lignin cultivars.  相似文献   
105.
The genes involved in polyphosphate metabolism in Escherichia coli were cloned behind different inducible promoters on separate plasmids. The gene coding for polyphosphate kinase (PPK), the enzyme responsible for polyphosphate synthesis, was placed behind the Ptac promoter. Polyphosphatase, a polyphosphate depolymerase, was similarly expressed by using the arabinose-inducible PBAD promoter. The ability of cells containing these constructs to produce active enzymes only when induced was confirmed by polyphosphate extraction, enzyme assays, and RNA analysis. The inducer concentrations giving optimal expression of each enzyme were determined. Experiments were performed in which ppk was induced early in growth, overproducing PPK and allowing large amounts of polyphosphate to accumulate (80 mumol in phosphate monomer units per g of dry cell weight). The ppx gene was subsequently induced, and polyphosphate was degraded to inorganic phosphate. Approximately half of this polyphosphate was depleted in 210 min. The phosphate released from polyphosphate allowed the growth of phosphate-starved cells and was secreted into the medium, leading to a down-regulation of the phosphate-starvation response. In addition, the steady-state polyphosphate level was precisely controlled by manipulating the degree of ppx induction. The polyphosphate content varied from 98 to 12 mumol in phosphate monomer units per g of dry cell weight as the arabinose concentration was increased from 0 to 0.02% by weight.  相似文献   
106.
The effect of intracellular polyphosphate on the phosphate-starvation response in Escherichia coli was studied by genetically manipulating the intracellular polyphosphate levels and by performing phosphate shifts on the genetically engineered strains. Strains that produced large quantities of polyphosphate and were able to degrade it induced the phosphate-starvation response to a lesser extent than wild-type strains, whereas strains that were unable to degrade a large intracellular polyphosphate pool induced the phosphate-starvation response to a greater extent than wild-type strains. These results have important implications for expression of heterologous genes under control of the phoA promoter. (c) 1996 John Wiley & Sons, Inc.  相似文献   
107.
Macroalgae are generally used as indicators of coral reef status; thus, understanding the drivers and mechanisms leading to increased macroalgal abundance are of critical importance. Ocean acidification (OA) due to elevated carbon dioxide (CO2) concentrations has been suggested to stimulate macroalgal growth and abundance on reefs. However, little is known about the physiological mechanisms by which reef macroalgae use CO2 from the bulk seawater for photosynthesis [i.e., (1) direct uptake of bicarbonate (HCO3 ?) and/or CO2 by means of carbon concentrating mechanisms (CCM) and (2) the diffusive uptake of CO2], which species could benefit from increased CO2 or which habitats may be more susceptible to acidification-induced algal proliferations. Here, we provide the first quantitative examination of CO2-use strategies in coral reef macroalgae and provide information on how the proportion of species and the proportional abundance of species utilising each of the carbon acquisition strategies varies across a gradient of terrestrial influence (from inshore to offshore reefs) in the Great Barrier Reef (GBR). Four macroalgal groups were identified based on their carbon uptake strategies: (1) CCM-only (HCO3 ? only users); (2) CCM-HCO3 ?/CO2 (active uptake HCO3 ? and/or CO2 use); (3) Non-CCM species (those relying on diffusive CO2 uptake); and (4) Calcifiers. δ13C values of macroalgae, confirmed by pH drift assays, show that diffusive CO2 use is more prevalent in deeper waters, possibly due to low light availability that limits activity of CCMs. Inshore shallow reefs had a higher proportion of CCM-only species, while reefs further away from terrestrial influence and exposed to better water quality had a higher number of non-CCM species than inshore and mid-shelf reefs. As non-CCM macroalgae are more responsive to increased seawater CO2 and OA, reef slopes of the outer reefs are probably the habitats most vulnerable to the impacts of OA. Our results suggest a potentially important role of carbon physiology in structuring macroalgal communities in the GBR.  相似文献   
108.

Background

The dynamic growing and shortening behaviors of microtubules are central to the fundamental roles played by microtubules in essentially all eukaryotic cells. Traditionally, microtubule behavior is quantified by manually tracking individual microtubules in time-lapse images under various experimental conditions. Manual analysis is laborious, approximate, and often offers limited analytical capability in extracting potentially valuable information from the data.

Results

In this work, we present computer vision and machine-learning based methods for extracting novel dynamics information from time-lapse images. Using actual microtubule data, we estimate statistical models of microtubule behavior that are highly effective in identifying common and distinct characteristics of microtubule dynamic behavior.

Conclusion

Computational methods provide powerful analytical capabilities in addition to traditional analysis methods for studying microtubule dynamic behavior. Novel capabilities, such as building and querying microtubule image databases, are introduced to quantify and analyze microtubule dynamic behavior.
  相似文献   
109.
The immunophenotype of HT29 human colon cancer cells implanted into severe combined immunodeficient mice was assessed in primary tumours and their metastases in the lungs using an indirect immunohistochemical method. After primary tumours were surgically removed, the metastases were given time to develop, thus paralleling the clinical situation. While vimentin was negative in both primary and secondary tumours, E-cadherin was present as membrane-bound labelling in the primary tumours only. Whereas the markers p53, MIB1, PCNA and CEA were consistently positive in both primary and metastatic tumours, CD44 variant 6 and CA125 were negative in metastases but positive in the primary tumours. There was a significant increase in the percentage of cells labelled for p53 in the primary tumours compared with the metastases. For the proliferation markers, there was no significant difference in labelling between primary tumours and metastases for MIB1. Of the cytokeratins examined, CK 20 gave the strongest and most consistent reaction in both primary and secondary tumours. The results indicate that, for certain immunohistochemical markers, results are the same in both primary tumours and metastases. Hence, in these cases, antigens that are expressed on the primary tumour as well as on the metastases can serve as target molecules for immunologically based forms of treatment of metastases. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
110.
Polyphosphate degradation and phosphate secretion were optimized in Escherichia coli strains overexpressing the E. coli polyphosphate kinase gene (ppk) and either the E. coli polyphosphatase gene (ppx) or the Saccharomyces cerevisiae polyphosphatase gene (scPPX1) from different inducible promoters on medium- and high-copy plasmids. The use of a host strain without functional ppk or ppx genes on the chromosome yielded the highest levels of polyphosphate, as well as the fastest degradation of polyphosphate when the gene for polyphosphatase was induced. The introduction of a hybrid metabolic pathway consisting of the E. coli ppk gene and the S. cerevisiae polyphosphatase gene resulted in lower polyphosphate concentrations than when using both the ppk and ppx genes from E. coli, and did not significantly improve the degradation rate. It was also found that the rate of polyphosphate degradation was highest when ppx was induced late in growth, most likely due to the high intracellular polyphosphate concentration. The phosphate released from polyphosphate allowed the growth of phosphate-starved cells; excess phosphate was secreted into the medium, leading to a down-regulation of the phosphate-starvation (Pho) response. The production of alkaline phosphatase, an indicator of the Pho response, can be precisely controlled by manipulating the degree of ppx induction. Copyright 1998 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号